The MPG Carepackage: coordinating collective improvisation in Max/MSP
Extended Abstract - Submission for SEAMUS 2010
Nathan Wolek, Ph.D. - Stetson University - DeLand, FL

Mobile Performance Group is a collaborative, multimedia project involving faculty and
students from Stetson University's Digital Arts program. The group's primary mission is
to find new ways of presenting art outside of traditional venues. Since 2004, MPG has
fulfilled this objective by presenting a number of site-specific performances at festivals
and conferences throughout the United States. These performances are built on the
practice of collective improvisation and use audio and video materials that are gathered
throughout the host city in the days leading up the event. In order to ensure that our
music is coordinated along such common parameters as tonic, pitch set and rhythmic
timing, the author has developed a series of patches in Max/MSP that allow a single set
of data to be easily shared over a network. Members of the group are able to build
instruments that react to these messages and adapt the sonic output accordingly. In
this way, multiple laptop musicians are able to perform a collective improvisation that is
unified in its musical character while they design instruments that allow them to control
such parameters as timbral quality, density and texture with individual freedom. This
presentation will review the major components of the MPG Carepackage system,
demonstrate the system in use on multiple machines networked via WiFi and advise
interested parties on how to adapt the system for their own use.

The MPG Carepackage consists of two primary

patches: musiclinks and riddumbank. The musiclinks fmy name: | YourName

patch (pictured on the right) is used to share musical My Ip= 1472554208 interface: o0 | +
controls over the network between multiple computers L getmylp
during a performance. The functions of the patch are 8:‘;‘(;3

divided into 3 parts by color. The first section is shaded
deep purple and handles matters of network

connectivity. Users must first type a unique name into a A L
text field at the very top in order be identified within the tonic: [} C4 —scale—. _hold
system. The user’s name and IP address are broadcast basis: [lonian (Major) $

using the max.nethole java class to all other computers struct: (02457911 —~
listening with the same musiclinks patch and is stored root: | 0 ~chord--

by every one locally. At a basic level, this facilitates struct: |2 4 sent
messaging between machines. Once musiclinks is harm: 60 64 67

embedded within another patch, Max messages can be H H H
prepended with one of these unique names and sent

into the proper inlet to be directed at a corresponding
machine. A list of stored IP addresses and names is
displayed for easy reference by the user and can be
used as a means of verifying that the automatic
connections between the machines have indeed been
completed successfully. The IP addresses are also used to direct the CNMAT Open
Sound Control objects in their task of passing all other messages to those registered
within the network. Using the OSC objects for the more critical musical data ensures

bpm: | 120.
4bar freq: |0.125

sync: start: \:\

MPG Carepackage Wolek 2 of 4
SEAMUS 2010 submission Submission #336

better timing than what is provided via the networking features of Max’s java
implementation.

Each member must choose between the slave and master modes of operation. When
in master mode, the musical information contained in other sections of the patch is
broadcast over the network for others to receive. Whenever users are testing a patch
without being networked to others, they should place musiclinks in master mode to
ensure that changes are broadcast to their own patch. Logically, the slave mode allows
a user’s patch to receive these messages and react willingly. Users must coordinate
amongst themselves who will act as the master and who will operate in slave mode.
There is nothing currently in the system to prevent multiple users from setting their
interface to master mode. The musical effects of this “multiple master” situation can be
interesting, but are usually undesirable. If nothing else, this potential conflict should
encourage the musicians to discuss and cooperate on who will take the lead during
each segment of a performance.

The medium purple section of musiclinks handles information related to pitch via five
interconnected musical parameters: tonic, scale_basis, scale_struct, chord_root, and
chord_struct. The tonic is expressed as a pitch class with octave, where C4
corresponds to middle C on a piano, and is used as the basis for all other pitch controls.
The scale_basis provides a list of 35 preformed scales that have been adapted from
David Cope’s book, Techniques of the Contemporary Composer (page 27). Once a
selection has been made from this menu, the list of pitches is loaded into the
scale_struct text field where each scale member is displayed as half-steps above the
tonic. Here further modifications can be made, such as deleting pitches, adding pitches
or converting pitches from integer to floating-point numbers. Next, the chord_root
defines which index within the scale structure should be used as the basis for the
prevailing chord for harmonic emphasis. Finally, the chord_struct defines which indices
above or below the root should be used to define the prevailing chord. A keyboard
slider is used to provide a visual display of the defined chord once the necessary
information has been entered.

The third, light purple section handles tempo information. The shared rhythmic cycle is
controlled within the MSP domain. Through much trial and error, the author has found
that this is the most reliable method to ensure uniform timing across machines in Max/
MSP. The tempo is expressed in beats per minute and controls the frequency of a
[phasor~], which is calculated based on the assumption that the [phasor~] should
complete one cycle for every four measures of common time. Although this assumption
may not always match the application of the rhythmic cycle on all machines within the
system, it provides a more intuitive control than setting the frequency of the [phasor~]
directly would. Each machine in the system has it’s own independent [phasor~]. These
are kept phase-locked through a resync message that is broadcast once per cycle and
more frequent updates of the tempo as it changes during musical gestures such as an
accelerando.

MPG Carepackage Wolek 3 of 4
SEAMUS 2010 submission Submission #336

3 | | | | | | |
= | \ll III | | | | | \l\ \ll |

e L J LA AR AR R RN R0 RO RN RD)]} 4567883 D rate

PR R AR
coocococococooo
-

PR TR N YRR

1

The control signal from the synchronized [phasor~] objects is used to drive the
riddumbank patch (pictured at the top of page). When embedded in a host patch, the
outlets from riddumbank produce a pulse signal output. Ten distinct rhythmic patterns
can be entered on the rows of the main 64-step grid with green dots denoting an active
cell. The current position within the rhythmic cycle is displayed by a series of red dots
across the top that light up in succession to provide visual feedback of the cycle’s
progress. When the loop passes a pattern position that has been activated with a green
dot, the MSP signal goes to 1.0; otherwise, the signal remains at 0.0. This signal can be
easily used to control such objects as [adsr~] and provide enveloping for synthesis or
sample triggering. The 10 rows do not correspond directly to the 10 outlets of
riddumbank. Instead they can be patched in and out using the matrix on the right with
purple dots denoting a made connection. This allows for the rhythmic patterns’
destinations to be reconfigured enabling such actions as disabling the output of patterns
selectively, directing a single row to be fed to multiple outlets or combining multiple
patterns to be fed to a single outlet.

Several controls are added to these basic features of pattern entry and output patching.
Across the top of the patch are a series of vertical ticks that allow the user to quickly see
groupings that are of interest. The number of cells within a grouping can be changed
using the number boxes in the upper-left hand corner of the patch. Between the pattern
entry grid and the output patching martix, are a series of buttons that allow for quick
permutations of the rhythmic patterns in a given row. The letter at the top of the column
denotes which operation the button performs (notated in the table to the right). On the
right edge of the patch are

char description two final controls. The
first is two numbers
C clears the pattern currently in the row, leaving it blank beneath the letter D that

activate a “destablizing”

R enters a random pattern into the row algorithm which will cause

< shift the current pattern one position to the left the patch to dynamically
choose random cells from

> shift the current pattern one position to the right the rhythmic pattern

T | fill in all ticks visualized at the top of patch without playing them all,

thereby increasing its

t fill in a random subset of the ticks from the top of patch variety. Lastly, the rate
parameter allows the
progress across each row
of the grid to be controlled independently, providing the possibility of such effects as
half-time (0.5), double time (2.0) and anything in between.

MPG Carepackage Wolek 4 of 4
SEAMUS 2010 submission Submission #336

The pitch information from musiclinks can be easily accessed use two small helper
abstractions: get_scalemem and get_chordmem. Both receive the shared musical
parameters from the network and load the respective

pitch sets into arrays for lookup functions. By sending o T,
integers to the first inlet, the object will look up the edge”, receive master
MIDI pitch stored at the corresponding index location T N

and output this value stored. The abstraction also | 0 | red\est note via

implements an element of circularity to extend the L & posilignin scale
scale and chord pitch arrays up and down 3 octaves [Endon

so that users can request pitches beyond the octave I

that the original set was confined to. In this way, the Mpg.get_scalemem.maxpat

abstractions facilitate algorithmic compositional .
strategies where pseudo-random number generators
and other functions can determine the selection of -

pitches for individual note events (as seen in the

screenshot on the right). The second outlet of these abstractions provides the length of
the scale or chord array so that pseudo-random number generators can be properly
constrained.

0 midi pitch is obtained

The current set of patches are the result of development dating back to 2003 and will be
made available for the first time via the internet before the conference. With this public
release and demonstration, it is my hope that others will download the MPG
Carepackage and adapt it to their own purposes and utilize it in performances. It should
be of special interest to those that direct laptop-based performance ensembles as part
of their teaching. The system allows students to rapidly develop patches in Max/MSP
that can then be used in group performances. The pedagogical benefits of such
deployment are that students become more easily engaged in live performance and the
communal activities that they expect from music making. This translates into students
that are more motivated to put in the hours of solitude often required to perfect their
patch, because they have a clearer concept of what the eventual goal of their work is.
The author looks forward to hearing feedback from the electronic music community as
others work with and adapt the system to their own purposes.

